密度为单位体积的质量,所以求液体的密度有以下两种方法。
方法一:
1.用天平称量一定质量的该液体;
2.将称量的液体倒入量筒,测出体积;
3.用质量除以体积就可得到此液体的密度。
方法二:
1.用量筒取一定体积的该液体;
2.用天平测出量取的液体的质量;
3.’用质量除体积就可得到此液体的密度。
使用勾股定理。
勾股定理的介绍:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理的来源:勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
牵引力:在机械工程中,牵引力是指包括汽车、铁路机车、自行车等轮式车辆载具的传动系统对车轮产生以旋转力矩,通过动轮与地面或钢轨之间的相互作用而产生。
力的作用方向与车辆运动方向相同,力的大小取决于原动机的功率和车辆的运动速度,可由车辆使用者根据需要而控制。
常记为F牵,与阻力相对。
通过计算速度、功率和力的关系可以发现,在功率相同的情况下,牵引力与运动速度成反比。