一个数学常数是指一个数值不变的常量,与之相反的是变量。
跟大多数物理常数不一样的地方是,数学常数的定义是独立于所有物理测量的。
数学常数通常是实数或复数域的元素。
数学常数可以被称为是可定义的数字,通常都是可计算的。
“属于”是元素与集合的关系,用于说明元素是、否某集合的元素;“包含于”是集合与集合的关系,用于说明集合是某集合的子集。
用几何画板打开,任意拖动点P(可在圆内、外),都有PA乘PB=PC乘PD,PA乘PB=PC乘PD就是幂等定理。
包括相交弦定理(点P在圆内),割线定理(点P在圆外)、切线长定理(点P在圆外A、B重合,C、D重合)、切割线定理(点P在圆外A、B重合或C、D重合)。
1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
3.割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA乘PB=PC乘PD。