当今的闭环自动控制技术都是基于反馈的概念以减少不确定性。
反馈理论的要素包括三个部分:测量、比较和执行。
测量关键的是被控变量的实际值,与期望值相比较,用这个偏差来纠正系统的响应,执行调节控制。
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I和微分单元D组成。
PID控制的基础是比例控制;积分控制可消除稳态误差,但可能增加超调;微分控制可加快大惯性系统响应速度以及减弱超调趋势。
这个理论和应用的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。
PID控制器作为最早实用化的控制器已有近百年历史,现在仍然是应用最广泛的工业控制器。
PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
1.令调节器参数积分系数S0等于0,实际微分系数k等于0,控制系统投入闭环运行,由小到大改变比例系数S1,使扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止;
2.取比例系数S1为当前的值乘以0.83,由小到大增加积分系数S0,同样让扰动信号作阶跃变化,直至求得满意的控制过程;
3.积分系数S0保持不变,改变比例系数S1,观察控制过程有无改善,如有改善则继续调整,直到满意为止。
否则,将原比例系数S1增大一些,再调整积分系数S0,力求改善控制过程。
如此反复试凑,直到找到满意的比例系数S1和积分系数S0为止;
4.引入适当的实际微分系数k和实际微分时间TD,此时可适当增大比例系数S1和积分系数S0。
和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。
PID控制,当今的闭环自动控制技术都是基于反馈的概念以减少不确定性。
反馈理论的要素包括三个部分包括测量、比较和执行。