傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。
而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
和傅立叶变换算法对应的是反傅立叶变换算法。
该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。
因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,可以利用一些工具对这些频域信号进行处理、加工。
最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。
它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换的物理意义,无需多讲,就是把非周期信号,用无限的周期正余弦函数进行叠加,来表示所需要的时域的函数。
做傅里叶变换的目的是因为 很多在时域内看不见的特性在频域内能很清楚的得到。
比如说,矩形波,在时域内就一直线,当用傅里叶变换后在频域内,我们就能看见像各谐波的频率,相位,振幅,能量等等信息。
会给我们分析问题带来很大的方便。
同时,傅里叶变换把函数变换为正弦或余弦,正余弦函数的好处就是其微分和积分也是正余弦,计算起来很方便。
同时,根据欧拉公式,正余弦函数是指数为复数的指数函数,指数函数的微分积分也是它本身,这也给我们提供了非常方便的计算途径。
越大,导热性能越好。
傅立叶定律是法国著名科学家傅立叶在1822年提出的一条热力学定律。
该定律指在导热过程中,单位时间内通过给定截面的导热量,正比于垂直于该截面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。
牛顿的冷却定律是傅立叶定律的离散推广,而欧姆定律则是傅立叶定律的电学推广。