微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分的基本概念和内容包括微分学和积分学。
微分学的主要内容包括:极限理论、导数、微分等。
积分学的主要内容包括:定积分、不定积分等。
从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。
微积分中的微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化,在使用微元法处理问题时,需将其分解为众多微小的"元过程",而且每个"元过程"所遵循的规律是相同的,这样,我们只需分析这些"元过程",然后再将"元过程"进行必要的数学方法或物理思想处理,进而使问题求解,使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
微积分学 (Calculus, 拉丁语意为用来计数的小石头) 是研究极限、微分学、积分学和无穷级数的一个数学分支,并成为了现代大学教育的重要组成部分。
历史上,微积分曾经指无穷小的计算。
更本质的讲,微积分学是一门研究变化的科学,正如几何学是研究空间的科学一样。
微积分学在科学、经济学和工程学领域被广泛的应用,来解决那些仅依靠代数学不能有效解决的问题。
微积分学在代数学、三角学和解析几何学的基础上建立起来,并包括微分学、积分学两大分支。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。
我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
在更深的数学领域中,微积分学通常被称为分析学,并被定义为研究函数的科学。